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1. INTRODUCTION

Let an arbitrary weight function WE C[a, b] and nodes Yi,n with

-oo<a=YO,n<YI,n< ... <Yn,n=b<oo

be given. We consider quadrature formulas (q.f.)

n

Qn[f] = L ai,nf(Yi,n)
;=0

(1.1 )

which are exact for polynomials of degree ~ r - 1 and therefore admit a
Peano kernel representation for the remainder Rn[f] if f(r- I) is absolutely
continuous; i.e.,

Rn[f] =rf(x) w(x) dx - Qn[f] =rf(r)(x) Kr,n(x) dx, (1.2)
a a

where Kr,n(x)=Rn[(·-x)'+-I/(r-l)!] is the Peano kernel of order r of
Qn' By (1.2),

for fE W;, (1.3)

where W~={jEC'-I[a,b]; flr-I) abs. cont., Ilf(r)llp<oo}, Ilfllp=
(J~ /f(xW dX)I/P (1 ~ p < 00), and Ilflloo = IIfll = sup essa';;x:5b If(x)l. A
qJ. Qn = Q~ is called best in the sense of Sard (with respect to -W;, w, and
YO,n, ..., Yn,n), if it minimizes II Kr,n 112' i.e., if it admits the least constant c in
the estimate IRn[f]1 ~ c IIflr)b

The investigation of Sard's q.f. for integrals with a preassigned
(integrable) weight function was suggested by Schoenberg in [5]. Schoen­
berg considered questions of existence and characterization for q.f. which
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contain also derivatives of f at the endpoints a and b of the interval of
integration. In [3], Kershaw investigated Sard's q.f. of order two (i.e.,
r = 2) for continuous weight functions. He obtained estimates of the
L 2-norm of the corresponding Peano kernel K; n and of the error R~[f]

for f E C 4 [a, b], but did not consider the weight~ a~.n (except for w == 1 and
equidistant nodes). Here, we will improve Kershaw's results on the norm
of the Peano kernel and on the convergence of R~[f], and discuss the
weights a~ n in more detail, especially if the nodes are given by certain node
distributi~n functions z (i.e., Yi n = z(i/n)). We propose a generalization of
the first and second conjecture of Meyers and Sard [4], which holds in the
case considered here.

2. ARBITRARY NODES

From now on, we restrict to the case r = 2. For the nodes Yi = Yi.n, only
(1.1) is supposed to hold, and w is the preassigned continuous weight func­
tion. Let Q~ be Sard's q.f. of order two, R~ the corresponding remainder
functional, and K~ the corresponding Peano kernel of order two. Further
let

and

THEOREM 2.1. (a) IIK~112 ~ «b - a)/120)1/2 A~ Ilwll, and

(b) IIK~II ~ 3A~ Ilwll/8.

Remark. Theorem 2.1(a) was proven by Kershaw [3] with the constant
(3/64)1/2=0.216506..., whereas (1/120)1/2=0.091287.... This constant is best
possible since, for n = 1 and w = constant, we have equality in (a). From
Theorem 2.1 (a) and (1.3), we get the following

COROLLARY. IR~[f]1 ~ «b-a)/120)1/2 A~ IIwlllll"I12for fE W~'

If I" is smooth, better estimates can be obtained. Let w(f, t) denote the
modulus of continuity of f, i.e., w(f, t) = sup{ If(x) - f(Y)I; Ix - yl ~ t}.

THEOREM 2.2. Let rn[f] = 3A~ Ilwll (11"(a)1 + II"(b)1 )/16. Then

(a) IR~[f]1 ~ (b-a)A~w(I",An)Ilwll/1201/2+rn[f] for f E C 2[a,b],

(b) IR~[f] I~ (b - a) A ~w(f"', An) Ilwll/60 + rn[f] for f E C 3 [a, b],

(c) IR~[f] I~ (b - a) A~ Ilf(4)11 Ilwll/120 + rn[f] for f E C 4 [a, b].

Remarks. (a) Kershaw [3] proved R~[f]=O(A~/2) for fEC 4 [a,b],
whereas Theorem 2.2(b) gives R~[f] = O(A~) even for f E C 3 [a, b]. This
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result cannot be improved further, since for w == 1, equidistant nodes (i.e.,
Yi = a + iA n' An = (b - a )/n), and I E wi, we have the following asymptotic
behaviour of R~[f] (the proof will be omitted):

R~[f] = -A~(f"(a) + f"(b)) 3 1/2/72

+A:(f"'(b) - f"'(a))/720 +0(,1:).

(b) For IEC 4 [a,b] with f"(a)=f"(b) =0, Theorem2.2(c) gives
IR~[f]1 ~ (b - a) A: 11/(4)11 Ilwll/120. This was also proven by Kershaw [3]
with the constant 33/2/64 = 0.081189... (1/120 = 0.008333... ).

(c) At least for w == 1 and equidistant nodes, the constants in
Theorem 2.2 are not best possible. Schurer [7] has proven that for w== 1,
equidistant nodes and I E C 4 [a, b],

IR~[f]1 ~ A ~ If"(a) +f"(b )1/40 + (b - a) A: 111(4)11/320.

where the constants 1/40 and 1/320 are best possible.

For the weights a:,n of Q~, the following estimate in dependence of the
global mesh ratio holds.

THEOREM 2.3. Let hdhj ~ M for all i, j = 1, ..., n. Then

la:,n I~ An IIwll (1 + M) lor i =0, ... , n.

3, SPECIAL NODE DISTRIBUTIONS

We now consider the case that the nodes are given by a node distribu­
tion function z, i.e.,

where x i•n = Xi = ih, h = l/n.

For simplicity, only the following two classes of node distributions will be
considered:

ZI = {ZEC 1[0, 1];z(O)=a, z(l)=b, z'(x»OforO~x~I},

Z2 = {ZEC 2 [0, 1];z(O)=a, z(I)=b, z'(x»OforO<x< 1,

z'(O)=z'(1)=O, Z"(O) #0, z"(I)# 1}.

Important examples are (i) for ZEZ1 : z(x)=a+x(b-a) (equidistant
nodes), and (ii) for ZE Z2: z(x) = -cos nx with a = -1, b = 1 (nodes of the
Clenshaw-Curtis q.f.). Let

A= 31/2
- 2 and (3.1 )
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Further, for Z E C 1[0, 1], let

PETER KOHLER

a? n = hz'(x;) w(y;)(5 + AI n)/12,, .
a~n = hz'(x;) w(y;)(1- Ai.nI2),

i=O, n,

i = 1, "', n - 1.
(3.2)

THEOREM 3,1. Let z E Zj' j = 1, 2, and a~.n the weights of Q~.

(a) There exists a constant d=d(w, z) (i.e., d depends on wand z
only) with la~.n I~ din for all i and n.

(b) a~.n=hz'(x;)w(y;)+o(h) if 6~Xi~1-6, 0<6<!, and the
o-term holds uniformly in i. If Z E Z 1 only, then

a~ n = a? n+ o(h) uniformly for all i = 0, "., n.

(c) If i = i(n) depends on n such that limn ~ co i(n )/n = XE (0, 1), then
limn~co na~(n).n =z'(x) w(z(x)).

(d) limn~cona~.n=z'(0)w(a)(l-Ai/2) for any fixed i~1, and
limn ~ co na~ n = z'(O) w(a)(5 +A)/12.

(Corresponding results are obtained if n - i is fixed.)

For the best q.f. with respect to W; (r ~ 1), w=1, and z(x) = x, three
conjectures were set up by Meyers and Sard [4], which were proven by
Schoenberg in [6]. The first two conjectures, which concern the weights
(the third concerns the L 2 -norm of the corresponding Peano kernel and
will not be considered here) are as follows:

and

(MS1) lim na'[n/2]+i.n = 1
n~ co

for any fixed integer i,

(MS2) lim na~ n
n _ 00 '

exists for any fixed integer i~ 0

( [x] denotes the largest integer not greater than x). Theorem 3.1 suggests
the following generalization of these conjectures for the best q.f. with
respect to W; (r ~ 1), WE C[a, b], and Yi = z(x;), Z E CI[O, 1] strictly
increasing:

and

(GMS1) lim na~(n).n =z'(x) w(z(x))
n~ co

if lim i(n)/n=xE(O, 1),
n~ co

(GMS2) lim na~.n
n~ co

exists for any fixed integer i ~ O.
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We return to the case r = 2 and conclude with the following theorem,
which is an easy consequence of Theorem 3.1(a) and (b) (the proof will be
omitted).

THEOREM 3.2. Let Z E Zj, J= 1, 2. Then the following is valid.

(a) limn~oo 1:7=0 la~,nl = s: Iw(x)1 dx,

(b) limn~oo Q~[f] = J~f(x) w(x) dx iff is Riemann integrable.

4. THE PROOFS OF SECTION 2

Let gE C 2 [a, b] be any fixed function with

g"=w,

and let Sj be the B-splines of degree 1, i.e., for J= 0, ..., n

for XE(Yj_"Yj)

for x E [Yj' Jj+ d
else

(y _, < a and Yn +, > b may be chosen arbitrary). Now the set of all Peano
kernels Kn = K2,n of order two of q.f, with nodes Yo, ..., Yn is given by

Gn = {Kn = g+.t CiSi;Ci E IR, Kn(a)=Kn(b)=O}.
1=0

Since G1 consists of one element only (viz. L,[g], s. (4.4)), we assume that
n~ 2. For any fixed K n* E Gn , we get

Therefore, a q.f. Q~ is best in the sense of Sard (with respect to W~, w, and
Yo, ..., Yn), if its second Peano kernel K~ satisfies

and, as a consequence, K~ is also determined by

(4.1 )

rsi(x)K~(x)dx=O
a

for i = 1, ..., n - 1. (4.2)
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If K~ = K: +L7~/ c~s;, then the c~'s are the solution of

Ci_Ihj(h i + hi+d + 2ci + Ci+Ihi+ I/(h i + hi+I)

i= 1, ..., n -1, (4.3 )

with Co =Cn = 0 and ri = -6 J~ Si(X) K:(x) dx/(h i + hi+I)' System (4.3) is
well known, e.g., from cubic spline interpolation.

LEMMA 4.1. The solution of (4.3) satisfies

(a) max{lcil; i= 1, ..., n-l} ~max{lril; i= 1, ..., n-l} and

(b) I I<",n-I I 121-ii-ji/3 '-1 -1Ci =L..,j~1 rj ,1- , ...,n .

For (a) s. de Boor [1, p. 43/44], for (b) see Kershaw [2]. In the sequel
we will make essential use of linear spline interpolation. Let Ln[f] be the
corresponding error, i.e.,

n

Ln[f](x) = f(x) - L: f(y;) Si(X),
, i~O

X E [a, b]. (4.4 )

If XE[Yi,Yi+I], then Ln[f](x)=(x-Y;)(X-Yi+d[Yi'Yi+l,X]f (de
Boor [1, p. 39]; [',',' J denotes the second divided difTence), and from this
it is easy to get the following lemma.

LEMMA 4.2. (a) Let fEC 2[a,b]. Then, for J=1, ...,n-1, J~Sj(x)

Ln[f](x) dx = - r(1]j)(h] + h]+ I )/24, where 1]j E [Yj-l, Yj+ I].

(b) IILn [fJI12 ~ ((b-a)/120)1/2 A~ Ilrll and IILn [fJII ~A~ Ilrll/8
for f E C 2 [a, b].

(c) IILn[f]112 ~ ((b - a)/30)1/2 Anw(f', An) and IILn[f]11 ~

Anw(f', An)/4 for f E CI[a, b].

(d) IILn[f]112 ~ (b-a)I/2 w(f,A n) and IILn[f] II ~ w(f,A n) for
fEC[a,b].

Obviously, Ln[g]EGn- Ln[g] is the Peano kernel of the (generalized)
trapezoidal rule._

LEMMA 4.3. Let K~ = Ln[g] + L7~l CiSi. Then Ieil ~ A~ Ilwll/4, i = 1, ...,
n-l.

Proof From (4.3) with K:=Ln[g] and Lemma4.2(a) we get

Irjl =(hj +hj+,)-l (h;+h;+I) IW(1]j)I/4

~max(hJ,hJ+I) IIwll/4~A~ Ilwll/4.

An application of Lemma 4.1 (a) completes the proof.

(4.5)

Q.E.D.
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Proof of Theorem 2.1. (a) Since Ln[g] EGn, (4.1) and Lemma 4.2(b)
give

(b) From Lemma 4.3 and Lemma 4.2(b), we get

Q.E.D.

Proof of Theorem 2.2. By (1.2) and (4.2) we have

b( n-I )
R~[f] = L f"(x) - i~1 f"(yJ Si(X) K~(x) dx

= rLn[f"](x) K~(x) dx
a

+rf"(yo) So(x) K~(x) dx
a

+rf"(Yn) Sn(x) K~(x) dx,
a

which gives

IR~[f]1 ~ IILn[f"]1121IK~112

+ (1f"(a)1 + 1f"(b)l) IIK~II An/2.

Now everything follows directly from Lemma 4.2 and Theorem 2.1. Q.E.D.

By Schoenberg [5], we have aO. n = -K~(a +), an,n = K~(b -), and
ai.n = K~(Yi - )..,... K~(Yi + ), i = 1, ..., n -1. Some simple computations give

LEMMA 4.4. Let Kn = Ln[g] + L:7= 1 CiS;, Co = Cn = 0, and let ai,n be the
weights of the corresponding q.f Then

and

ai,n = (hi + hi+I) w(C)/2 + (c i - Ci+d/h i+1

+(ci-ci-d/hi, i=1, ...,n-1,

where (0 E [Yo, YI], (n E [Yn-l> Yn], and CE [Yi-l> Yi+I], i= 1, ..., n-1.

Theorem 2.3 is an immediate consequence of Lemma 4.3 and Lemma 4.4.
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5. THE PROOF OF THEOREM 3.1

AE ( -1,0), i=O, ... , n. (5.1)

LEMMA 5.1. Let K~=Ln[g]+L7':/(w(yJh;hi+I(I-AJ/12+eJsj and
z E Zj' j = 1, 2. Then there exists a constant d = d( w, z) such that

for i = 1, ..., n - 1.

Proof Lemma 4.1(a) gives max lejl ~max Irjl with

b ( n
rj = -6 t Sj(x) Ln[g](X)+j~O w(Yj)

Xhjhj+I(I-Aj)Sj(X)/12) dX!(h j +h;+d

(note that 1- Ao = 1 - An = 0; further let ho = hI and hn+1= hn).
Lemma 4.2(a) and some elementary calculations give 12(h j + h j+ dr j =
w(l1j)A+B+C, where

A = h~(2(hj -h;+ d +h; -hj~ d

+h~+1(2(h;+1 -hJ+h;+1 -hj+ 2 ),

B= w(Yj_ d hj_Ih~Aj_ 1 + 2w(yJ hjh j+ I(h j + h j+ dA;

+ w(y;+ I) h~+ .h;+2 A;+ I

C = (W(l1J - w(y;_ d) h;_lh~

+ 2(W(l1J - w(yJ) h;h i+I(h i + hi+d

+ (W(l1J - W(Yi+ I)) h~+ I hi+2'

(i) Ihj+m-hjl = IJ~::-l (z'(x)-z'(x-mh)) dxl ~mhw(z', h), which
gives IAI ~ 3L1 nhw(z', h)(h j+ hi+d·

(ii) Statement (5.1) gives Aj = -(Ai-I +Ai+d/4. Inserting this in B
gives, together with IAil ~ 1,

IBI ~ IW(Yi_ d hi_Ih~ - w(yJ hih i +I(h; + hi +d/21

+ Iw(y;+ d h7+ I h;+2 - w(yJ hjh j+I(h i + hi +d/21 = B I + B2·
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The triangle inequality gives

B I ~ w(w, An) hi_Ih; + Ilwll hi Ihi_Ihi - hi+ I(h i + hi+ 1)/21

~ elh2(w(w, h) + w(z', h))hi.

255

This is also true for B2 with the same constant el =el(w, z) and hi replaced
by hi + l .

(iii) ICI~e2h2w(w,h)(hi+hi+d. Q.E.D.

Ie;! ~ dmin(i2, (n - if)h4 for i= 1, ..., n -1, where d= d(w, z).

Proof (i) hi = hZ'(~i) = h(z'(~;) -z'(O)), ~i E [Xi-I, X;] gives

i= 1, ..., n. (5.2)

(ii) From (4.5) and (5.2) we get Irjl ~ Ilwll U+ 1)2 h4 11z"11 2/4 and
therefore, by Lemma 4.1 (b ),

n-I

lei I~ e I h4 L U + 1)2 2 -Ij - il
j~1

n-I

=el i 2h4 L (U+l)/i)22-lj-il~e2i2h4,

j=1

where ej = ej(w, z), j = 1, 2. The other estimates follow similar. Q.E.D.

We are now ready to prove the following lemma on a:,n' from which
Theorem 3.1 follows immediately.

LEMMA 5.3. (a) Let z E Z I' Then there exist constants dj = dj(w, z),
j= 1, 2, with

and

for i=O, ..., n.

(b) Let ZEZ2 and 8E(0, !). Then the estimates of (a) holdfor

8 + lin ~ iln ~ 1- 8 - lin
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(c) Let ZEZ2 and GE(O, ~). Then,jor G sufficiently small, there exists
a constant d3 = d3(w, Z, G) such that

la:,nl~d3h2min(i+l,n-i+l) if O~iln~G-lln

or 1- G+ lin ~ iln ~ 1.

Proof (a) Let K~ be as in Lemma 5.1 and ZE ZI' For i = 1, "', n - 1,
Lemma4.4 gives a:n=aJ+a;+a~ with aJ=(hi +hi+dw(c)/2, (;E
[Yi-l> Yi+d, a;= -'(w(Yi-dhi- I(1-Ai_d-w(YJ (hi +h i + I )(I-AJ +
W(Yi+ d h;+ 2(1- Ai + d)/12, and a~ = (Gi - Gi+ dlh i+I + (Gi - Gi_ dlh i,

(i) laJ - hZ'(xJ w(yJI = h Iz'(U w(C) - z'(xi) w(yJI, ~i E [X;_I'
Xi-I]. The triangle inequality gives laJ-hz'(xJw(YJI~elh(w(z',h)+

w(w, h)).

(ii)

la; + hZ'(xJ w(yJA;/21 = Iw(yJ(hi + hi+1 )(A i _ 1 - 2Ai + Ai + d/2

-(W(Yi-l)hi- 1 -w(yJ(h; +hi+d/2)(I-Ai_ t )

- (W(Yi+ dh i+2 - w(yJ(hi + h;+ d/2)

x (1- Ai+d +6hz'(xJ w(yJAil/12

~ e2h(w(z', h) + w(w, h)),

since (5.1) gives Ai - 1 -2A; +Ai+1 = -6Ai.

(iii) By Lemma 5.1 and hi = z'(Uh ~ h min z'(x) > 0, we get

la~1 ~ dh 2(w(z', h) + w(w, h))(2Ihi + 2lhi+d
~ e3h(w(z', h) + w(w, h)).

Combining (i)-(iii) gives the first statement of Lemma 5.3(a) for
i = 1, "., n - 1. The case i = 0, n can be treated in the same way. The second
statement follows directly from Theorem 2.3.

(b) follows by minor modifications of the proof of (a),

(c)-For ZEZ2 and G sufficiently small, we have z, :=min{lz"(x)l;°~ x ~ G or 1- G~ X ~ 1} > 0. If °< jln ~ G, then

hj=f rz"(t)dtdx~z,h2(j-1/2»0. (5.3)
X}-l 0

Let K~ be as in Lemma 5.2. Then Lemma 4.4 and (5.2) give (for
i = 1, "., n - 1)

la: nI~ el(i + 1)h2+ e2(i + 1f h4(llh i + Ilh i+1) ~ d3(i + 1)h2

by (5.3). The other cases can be treated similarly. Q.E.D.
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