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1. INTRODUCTION

Let an arbitrary weight function we C[q, b] and nodes y,, with
—0 <KA=Yy, <Y1p < < Ypn=b< (1.1)

be given. We consider quadrature formulas (q.f.)

n

Q.[f1=% a;, f(y:a)

i=0

which are exact for polynomials of degree <r—1 and therefore admit a
Peano kernel representation for the remainder R,[ f] if f* ! is absolutely
continuous; i.e.,

RLA1=[ S0y w(x) ds—Q,f1=] SO Kpix)dr,  (12)

where K, ,(x)=R,[(-—x)""'/(r—1)!] is the Peano kernel of order r of
Q,. By (1.2),

IR,L/ASIK LM/, for fews, (1.3)

where Wi ={feC " '[a,b]; f*~" abs. cont, |f”),<w}, Ifl,=
(Jo LA dx)'” (1£ p<o0), and | fl,, =] = supess,g.c, |/(x). A
q.f. 0, =Q; is called best in the sense of Sard (with respect to W7, w, and
Yo,ns = Yu,n) if it minimizes || K, [ ,, i.e., if it admits the least constant ¢ in
the estimate |R,[f]| Zc |lf"],.

The investigation of Sard’s q.f for integrals with a preassigned
(integrable) weight function was suggested by Schoenberg in [5]. Schoen-
berg considered questions of existence and characterization for q.f which
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contain also derivatives of f at the endpoints a and b of the interval of
integration. In [3], Kershaw investigated Sard’s q.f. of order two (ie,
r=2) for continuous weight functions. He obtained estimates of the
L,-norm of the corresponding Peano kernel K3, and of the error R;[f]
for f € C*[a, b], but did not consider the weights a}, (except for w=1 and
equidistant nodes). Here, we will improve Kershaw’s results on the norm
of the Peano kernel and on the convergence of R;[ /], and discuss the
weights 4}, in more detail, especially if the nodes are given by certain node
distribution functions z (ie., y;, = z(i/n)). We propose a generalization of
the first and second conjecture of Meyers and Sard [4], which holds in the
case considered here.

2. ARBITRARY NODES

From now on, we restrict to the case r=2. For the nodes y, =y, ,, only
(1.1) is supposed to hold, and w is the preassigned continuous weight func-
tion. Let Q¢ be Sard’s q.f. of order two, R the corresponding remainder
functional, and K the corresponding Peano kernel of order two. Further
let

hy=y;,—y,_, and  4,=max{h;j=1,.,n}.
THEOREM 2.1. (a) | K3, < ((b—a)/120)" 42 ||w||, and
(b) K <342 ||lwl/8.
Remark. Theorem 2.1(a) was proven by Kershaw [3] with the constant
(3/64)'2 =0.216506..., whereas (1/120)"/% = 0.091287.... This constant is best

possible since, for n=1 and w=constant, we have equality in (a). From
Theorem 2.1(a) and (1.3), we get the following

CoROLLARY. |R,[f1I <((b—a)/120)'2 4% |wll "Il for f € W3.
If f” is smooth, better estimates can be obtained. Let w(f, t) denote the

modulus of continuity of £, ie., w(f, 1) =sup{|f(x)— f(¥); |x—y| £t}

THEOREM 2.2. Let r,[ f1=342 |wll (|f"(a)l + |£"(b)|)/16. Then
(@) |R[fUS(b—a)dia(f",4,)Iw|/120"2+r,[f] for fe C*[a,b],
(b) RSN (b—a)dlo(f", 4,) |w|/60+r,[f] for feC*[a,b],
() RSN (b—a)d; | f?l Iwl/1204r,[f] for f€ C*[a, b].

Remarks. (a) Kershaw [3] proved Ri[f]=0(42?) for feC*[a,b],
whereas Theorem 2.2(b) gives R:[f]=0(4?) even for f e C3[a, b]. This
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result cannot be improved further, since for w=1, equidistant nodes (i.e.,
yi=a+id,, 4, =(b—a)/n), and f € W}, we have the following asymptotic
behaviour of R:[ f] (the proof will be omitted):

Ri[f1=—43(f"(a)+ f"(5))3'7/72
+4,(f"(b) = f"(a))/720 + o(4,).

(b) For feC*a, b] with f"(a)=f"(b)=0, Theorem 2.2(c) gives
IRELFY S (b—a) 45 || f@) |Iw]/120. This was also proven by Kershaw [3]
with the constant 3%2/64 = 0.081189... (1/120 = 0.008333...).

(c) At least for w=1 and equidistant nodes, the constants in
Theorem 2.2 are not best possible. Schurer [7] has proven that for w= 1,
equidistant nodes and f € C*[a, b],

IR,[f1S4;1f"(a)+f"(b)I/40 + (b—a) 4, || f]/320.

where the constants 1/40 and 1/320 are best possible.

For the weights a;, of Q;, the following estimate in dependence of the
global mesh ratio holds.

THEOREM 2.3. Let h;/h; <M for all i, j=1, .., n. Then

la;, | <4, |wl (1+ M) for i=0,..,n

3. SpeciAL NODE DISTRIBUTIONS
We now consider the case that the nodes are given by a node distribu-
tion function z, i.e.,
Vin =2(X;,), where x,,=x;=ih h=1/n.

For simplicity, only the following two classes of node distributions will be
considered:

Z,={zeC'[0,1];2(0)=a, z(1)=b, z'(x)>0for0<x=1},
Z,={zeC’[0,1];2(0)=a, z(1)=b, z'(x)>0for0<x<l,
#(0)=2/(1)=0, z"(0)#0, z'(1)#1}.

Important examples are (i) for zeZ,: z(x)=a+ x(b—a) (equidistant
nodes), and (ii) for ze Z,: z(x) = —cos nx with a= — 1, b=1 (nodes of the
Clenshaw—-Curtis q.f.). Let

A=3Y2_2 and A=A, =2+ A1+ A", (3.1)
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Further, for ze C'[0, 1], let

ai,n

=hZ'(x)w(y)5+4,,)/12, i=0,n,

(3.2)
a;, =hz'(x) w(y )1 —4,,/2), i=1,.,n—1.

0
0

THEOREM 3.1. Let zeZ,, j=1, 2, and a;, the weights of Q.

(a) There exists a constant d=d(w, z) (i.e., d depends on w and z
only) with |aj, | < d/n for all i and n.

(b) a},=hz'(x)w(y)+oh) if eSx;S1—¢ O0<e<j, and the
o-term holds uniformly in i. If ze Z, only, then

a;,=a},+o(h)  wuniformly forall i=0,..,n.
(¢) If i=i(n) depends on n such that im,_,  i(n)/n=x¢€(0, 1), then
n— oo B, = 2'(x) w(z(x)).
(d) lim,_, . na;j, =2z'(0) w(a)(1 - AJ2) for any fixed iz1, and
lim, , ., nag , =z'(0) w(a)(5+ 2)/12.

(Corresponding results are obtained if n— i is fixed.)

lim

For the best q.f. with respect to W) (r=1), w=1, and z(x)=x, three
conjectures were set up by Meyers and Sard [4], which were proven by
Schoenberg in [6]. The first two conjectures, which concern the weights
(the third concerns the L,-norm of the corresponding Peano kernel and
will not be considered here) are as follows:

(MS1) lim nat,,;,,,=1 for any fixed integer i,

n- oo
and

(MS2) lim naj, exists for any fixed integer i = 0

n— oo

([x] denotes the largest integer not greater than x). Theorem 3.1 suggests
the following generalization of these conjectures for the best q.f. with
respect to W} (r=1), we Cla, b], and y; = z(x;), ze C'[0, 1] strictly
increasing:

(GMS1) lim nat,,, =z'(x) w(z(x)) if lim i(n)n=xe(0,1),

i(n),n
n—w

and

(GMS2) lim naj, exists for any fixed integer i = 0.

n -+ oo
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We return to the case r=2 and conclude with the following theorem,
which is an easy consequence of Theorem 3.1(a) and (b) (the proof will be
omitted).

THEOREM 3.2. Let zeZ,, j=1, 2. Then the following is valid.

(a) limn—voo Z;’=0 |af,n| =Iz IW(X)I dxa
(b) lim,, . Qi[f]1= j"a’ f(x)w(x)dx if f is Riemann integrable.

4. THE PROOFs OF SECTION 2
Let ge C*[a, b] be any fixed function with
g =w,

and let s; be the B-splines of degree 1, ie., for j=0, .., n

(x_yj—l)/hj for xe(yj~l,yj)
5;(x) =< (¥41 = X)/h; 41 for xe[yjajj+l)
0 clse

(y_1<aand y, ., >b may be chosen arbitrary). Now the set of all Peano
kernels K, = K, , of order two of q.f. with nodes y,, .., y, is given by

Gn = {Kn = g+ Z cisi; Ci € R’ Kn(a):'Kn(b):O}

i=0

Since G, consists of one element only (viz. L,[ g], s. (4.4)), we assume that
n=2. For any fixed K*e G,, we get

n—1
G,= {K,, =KX+ Y csi0 ER}.
i=1

Therefore, a q.f. Q3 is best in the sense of Sard (with respect to W3, w, and
Yo, - Vn), if its second Peano kernel K¢ satisfies

n-—1
KX+ Y cisil
i=1

i=

1Kz, = min ’

Clyes a1

) (4.1)

2

and, as a consequence, K is also determined by

b
[ sKyxdx=0  for i=1,.,n~1. (4.2)

a
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If K:=K¥*+>Y"Z!cSs,, then the ¢'s are the solution of
ciihif(hi + i )+ 2¢,+ ¢ ihig /(B +hiiy)
=r, i=1,..n—1, (4.3)
with ¢y =c¢,=0and r; = —6]2 s;(x) KX¥(x)dx/(h; +h, ). System (4.3) is
well known, e.g., from cubic spline interpolation.
LEMMA 4.1. The solution of (4.3) satisfies
(a) max{|c,|;i=1,.,n—1}<max{|r,|; i=1,..,n—1} and
() Il STz Il 2073, i=1, ., n— 1.

For (a) s. de Boor [1, p. 43/441, for (b) see Kershaw [2]. In the sequel
we will make essential use of linear spline interpolation. Let L, [ ] be the
corresponding error, i.e.,

™M=

LIfIx)=f(x)= 2 f(p)si(x),  xelab]. (4.4)

d i=0

If xely;, yiv1), then LLf1(x)=(x—y)x—yis )i Yivr, x1f (de
Boor [1, p. 39]; [-,-,-] denotes the second divided diffence), and from this

it is easy to get the following lemma.

LEMMA 4.2. (a) Let feC?*[a,b). Then, for j=1,..,n—1, [°s;(x)
L,[f)(x)dx= _f”("j)(h} +h;+1)/24a where n; €[y, 1, ¥j+1].

(b) IL.LAI2 S((b—a)/120) 2 4% | f"| and |L,LfIN<4515"1/8
for feC?[a,b].

©) LI £ (b= a)30)?4,0(f,4,) and |L,Lf]] <
4,0(f", 4,)/4 for f € C'[a, b].

(d) L[ £ (b—a)o(f,4,) and |L,Lf]l < o(f, 4,) for
feCla, b].

Obviously, L,[g]eG,. L,[g] is the Peano kernel of the (generalized)
trapezoidal rule..

Lemma 43. Let Ki=L,[g] +3"=)¢;s;. Then |c;| <A |w)/4, i=1, ...,
n—1.

Proof. From (4.3) with K¥=L,[g] and Lemma 4.2(a) we get
7y = Gy Ry )~ (83 4 B2, ) ()14
<max(h}, h7, ) [wll/4 < 4% |wi/4. (4.5)

An application of Lemma 4.1(a) completes the proof. Q.E.D.
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Proof of Theorem 2.1. (a) Since L,[g]eG,, (4.1) and Lemma 4.2(b)
give

1Kl S IL.LgTlly < ((5—a)/120)"2 47 [|w].

(b) From Lemma 4.3 and Lemma 4.2(b), we get

KIS el + st,- max je/| S (245 42wl QED.

Proof of Theorem 2.2. By (1.2) and (4.2) we have
b n—1
RLA=[ (£0=T £r)si0) o)
= [" LU/ 100) Ktx)
b
+ [ 7 (vo) solx) K3(x) dx

b
+ [ 17 sx) Kix) d,

which gives
IR,LA S L TH2 1K
+ (/" @I+ 1B 1K 4,/2.
Now everything follows directly from Lemma 4.2 and Theorem 2.1. Q.E.D.
By Schoenberg [5], we have a,,=—K,(a+), a,,=K,(b—), and

a,, =K (y;—)—K,(y;+), i=1,..,n—1. Some simple computations give

LEMMA 44, Let K,=L,[g]+>7_ ¢S5, €o=c¢, =0, and let a;, be the
weights of the corresponding q.f. Then

aO,n =h1W(C0)/2'— Cl/hls Ayn =hnw(Cn)/2—cn—l/hn
and
A= +hi  )W()24+(ci—cip1)/hiy
+(c;—c;_1)/hi, i=1,.,n—-1,

where Coe [yOa yl]9 ‘:n € [yn—l, yn]’ and Cie [yivl’ yi+1]9 i=1, ""n_l'

Theorem 2.3 is an immediate consequence of Lemma 4.3 and Lemma 4.4.
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5. THE PROOF OF THEOREM 3.1

Let A=3"Y2_2 and A, = (A*+ 2" ~9)/(1 + A") as in (3.1). Then
le(=1,0), 1444+42=0, |41, i=0,.,n (51)

LemMa 5.1, Let Ki=L,[g}+X7_) (w(y,) hihip(1-4,)/12+¢;)s; and
zeZ,;, j=1,2. Then there exists a constant d = d(w, z) such that

le;| S dn*(w(w, )+ w(z’, h))  for i=1,.,n—1.
Proof. Lemma 4.1(a) gives max |¢,;| £ max |r;| with
b n
= =6 [ 5,00 (LLelo)+ 3 wiy)
a j=0

x hh, (1 — /lj)sj(x)/l2> dx/(h,- +hii)

(note that 1—A,=1—4,=0; further let hy=h, and h,, ,=h,)
Lemma 4.2(a) and some elementary calculations give 12(h; +h;, ,)r; =
w(n;)A4 + B+ C, where
A=h2Q2(h; —h;y )+ h—h;_y)
+hi QR —h) by —hiy),
B=w(y,_ ) hi_ h2 o +2w(y;) bk (B + Ry ) A,
+ Wiy ) B hiadin
C=(wn)—w(yi_)) hi_ 1]
+2(w(n) —w(y) hihiy (B + iy o)
+ (W) —w(yi 1)) bl by

(i) |hjrm—hy |—|j'j§j:: (2 (x)—2'(x—mh)) dx| Emhw(z', h), which
gives |A| £34, hw(z h)(h; + h; 1)

(ii) Statement (5.1) gives 4; =
gives, together with |4,| <1,

—(A;_, + 4;,,)/4. Inserting this in B

Bl < [w(yi_1) hi_ lh?_ w(y) hihio (B + by 1)/2]
+Iw(yis1) hf_+1hi+2 —w(y) hih (b + b 1)/2| = B, + B,.
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The triangle inequality gives

By So(w, 4,) b, k] + |\ wl by (b chy — by (B + Ry )2
<e k¥ (w(w, h) + o(z', h))h;.

This is also true for B, with the same constant ¢, =e,(w, z) and A, replaced
by £,y
(iii) |C| L e,hPw(w, h)(h; + h;, ). Q.ED.
LEMMA 5.2. Let K:=L,[gl+Y""}c;s,and ze Z,. Then

le;| £dmin(i%, (n—*)h*  for i=1,..,n—1, whered=d(w,z).

Proof. (i) h; =hz'({;)=h(z'(§,) —2'(0)), &; € [x;_ 1, x;] gives
B, <ih? |z,  i=1,.,n. (5.2)

(ii) From (4.5) and (5.2) we get |r;| < |[lwll (j+1)*h*||z"|%/4 and
therefore, by Lemma 4.1(b),

n—1
lelSeh® Y (j+1)22704
j=1

n—1
=e,i%h* Y ((G+ 1)) 27V 1 ey,

J=1

where e; = ¢;(w, z), j= 1, 2. The other estimates follow similar. QE.D.

We are now ready to prove the following lemma on a;,, from which
Theorem 3.1 follows immediately.

LEmMMA 53. (a) Let zeZ,. Then there exist constants d;=d;(w, z),
j=1, 2, with

<d h(w(z', h)+ w(w, h))

and

la; | <d,h  for i=0,..,n

(b) Let zeZ, and e€ (0, 3). Then the estimates of (a) hold for

e+1/n<im<l —e—1/n with d,=d;(w,z¢e), j=1,2.
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(c) LetzeZ, and e€(0, 3). Then, for ¢ sufficiently small, there exists
a constant d; = d4(w, z, &) such that

laj,| £dsh*min(i+1,n—i+1) if 0Si/nsSe—1/n
or l—e+1/mZim<sl.
Proof. (a) Let K¢ be as in Lemma 5.1 and ze Z,. For i=1,.,n—1,
Lemma 44 gives a},=a!+a’+a} with al=(h;+h, )wl)2, (e

vicn i1 ai=—wy )b (1=4,_ ) —w(y) (hi+h )(1—=4) +
W(yip1) hiy (1 =4;4,))/12, and af3 =(&; =& )hipy + (& =& )/h;.

(i) la,l —hz'(x ) w(y)| =h 12 (E) w(lli) =2 (x) wly)l, &ielxi-y,
x;.1]. The triangle inequality gives |a; —hz'(x;) w(y,)| e h(w(z, h) +
aw(w, h)).

(i1)
la? +hz' () wp) Auf/2] = IW(p)(h + ho M-y =205+ Ay 1)/2
— Wy )by —w(y)hi + by, )2) (1= 2, _4)
—W(yir Vi, —w(ydhi + ki 1)/2)
X (1 —24;4)+6hz'(x;)w(y,)4;]/12
Seh(w(z', h)+ w(w, k),
since (5.1) gives 4, — 24, + A;,; = — 64,
(iii) By Lemma 5.1 and A, =z'({;)h = hmin z'(x) > 0, we get
a2 < dh¥(a(2', h) + o(w, B))(2/h; + 2k, )
Sesh(w(z, b)Y+ o(w, h)).
Combining (i)-(iii) gives the first statement of Lemma 5.3(a) for

i=1,..,n—1 The case i=0, n can be treated in the same way. The second
statement follows directly from Theorem 2.3.

(b) follows by minor modifications of the proof of (a).

(c) -For zeZ, and ¢ sufficiently small, we have z, :=min{|z"(x)|;
0sx=<eorl—e=<x=1}>0.If 0<j/n<Ze, then

hj='rq fxz”(t)dtdx;zehz(j—1/2)>0. (5.3)
xj—1 Y0
Let K be as in Lemma5.2. Then Lemma4.4 and (52) give (for
i=1,.,n—1)
|a§‘n|§e1(i+1)h2+e2(i+1)2h“(1/h,»+1/h,»+,)§af3(i+l)h2

by (5.3). The other cases can be treated similarly. Q.ED.
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